Deriving Sea Ice Thickness from ICESat-2: From Freeboard to Thickness via Snowfall

Alek Petty Code 615 (Cryospheric Sciences Lab)

www.alekpetty.com / @alekpetty / alek.a.petty@nasa.gov

07/09/2018

Passive microwave sensing sea ice cover

Passive microwave sensing sea ice cover

Significant impact on Earth's surface albedo

Heat/moisture fluxes to the atmosphere.

A key platform for various species/ organisms living in the Arctic.

New crop of active satellites provide the crucial third dimension

Inferring sea ice thickness remotely

Inferring sea ice thickness remotely

Why care about its thickness?

- Thicker ice is a lot more insulative than thinner ice!
- Thickness growth/melt controls freshwater input to the Arctic and Southern Oceans.

Geo

Importance for Arctic navigability.

e.g. ICESat-1 thickness (spring 2003)

- Laser altimeter, photon counting.
- Three pairs of beams, footprint of ~15 m.

- Laser altimeter, photon counting.
- Three pairs of beams, footprint of ~15 m.
- Official products will be made available after launch: e.g. elevation and freeboard.

- Laser altimeter, photon counting.
- Three pairs of beams, footprint of ~15 m.
- Official products will be made available after launch: e.g. elevation and freeboard.
- Semi-official sea ice thickness product.

- Laser altimeter, photon counting.
- Three pairs of beams, footprint of ~15 m.
- Official products will be made available after launch: e.g. elevation and freeboard.
- Semi-official sea ice thickness product.
- Need ancillary data, e.g. snow depth and density.

- Laser altimeter, photon counting.
- Three pairs of beams, footprint of ~15 m.
- Official products will be made available after launch: e.g. elevation and freeboard.
- Semi-official sea ice thickness product.
- Need ancillary data, e.g. snow depth and density.
- How else can we use the data for sea ice research?

Inferring sea ice thickness remotely

Soviet Station Arctic snow climatology

Soviet Station Arctic snow climatology

The NASA Eulerian Snow on Sea Ice Model (NESOSIM v1.0)

Included processes

- Snow accumulation
- Wind packing
- Ice/snow dynamics
- Blowing snow lost to leads

Prognostic snow depth & density

NESOSIM model code & data: github.com/akpetty/NESOSIM

From Petty et al., [2018, in review] 18

Annual Arctic precip estimates from reanalyses show high spread

From Boisvert et al., [2018 , J Climate]

NESOSIM forced by different reanalyses

2000-2015 season cycle

May 1st results (2009-2015)

Forced by MEDIAN snowfall, ERA-I winds, Bootstrap SIC, NSIDCv3 ice drift.

May 1st results (2009-2015)

Validating with Operation IceBridge snow depths

Errors of ~10 cm

(Corresponds to an ice thickness error of ~70 cm)

10 20 30 40 50 60 Snow depth (cm)

Forced by MEDIAN snowfall, ERA-I winds, Bootstrap SIC, NSIDCv3 ice drift.

Improving original ICESat thickness estimates

iceThicknessW99

Improving original ICESat thickness estimates

Working with climate modelling groups to provide longer term context

To summarize:

ICESat-2 will provide new insights into the Arctic and Antarctic sea ice thickness distribution.

We're ready for launch and excited to find out what those photons look like.

Questions?

Alek Petty Code 615 (Cryospheric Sciences Lab)

www.alekpetty.com / @alekpetty / alek.a.petty@nasa.gov

