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Abstract. The NASA Eulerian Snow On Sea Ice Model (NE-
SOSIM) is a new, open-source snow budget model that is cur-
rently configured to produce daily estimates of the depth and
density of snow on sea ice across the Arctic Ocean through
the accumulation season. NESOSIM has been developed in
a three-dimensional Eulerian framework and includes two
(vertical) snow layers and several simple parameterizations
(accumulation, wind packing, advection–divergence, blow-
ing snow lost to leads) to represent key sources and sinks
of snow on sea ice. The model is forced with daily inputs
of snowfall and near-surface winds (from reanalyses), sea
ice concentration (from satellite passive microwave data) and
sea ice drift (from satellite feature tracking) during the accu-
mulation season (August through April). In this study, we
present the NESOSIM formulation, calibration efforts, sen-
sitivity studies and validation efforts across an Arctic Ocean
domain (100 km horizontal resolution). The simulated snow
depth and density are calibrated with in situ data collected
on drifting ice stations during the 1980s. NESOSIM shows
strong agreement with the in situ seasonal cycles of snow
depth and density, and shows good (moderate) agreement
with the regional snow depth (density) distributions. NE-
SOSIM is run for a contemporary period (2000 to 2015),
with the results showing strong sensitivity to the reanalysis-
derived snowfall forcing data, with the Modern-Era Retro-
spective analysis for Research and Applications (MERRA)
and the Japanese Meteorological Agency 55-year reanalysis
(JRA-55) forced snow depths generally higher than ERA-
Interim, and the Arctic System Reanalysis (ASR) generally
lower. We also generate and force NESOSIM with a consen-
sus “median” daily snowfall dataset from these reanalyses.
The results are compared against snow depth estimates de-

rived from NASA’s Operation IceBridge (OIB) snow radar
data from 2009 to 2015, showing moderate–strong correla-
tions and root mean squared errors of ∼ 10 cm depending
on the OIB snow depth product analyzed, similar to the com-
parisons between OIB snow depths and the commonly used
modified Warren snow depth climatology. Potential improve-
ments to this initial NESOSIM formulation are discussed in
the hopes of improving the accuracy and reliability of these
simulated snow depths and densities.

1 Introduction

Snow on sea ice is a crucial component of the polar cli-
mate system. Its low thermal conductivity modulates sea ice
growth through the cold winter months (e.g., Maykut and
Untersteiner, 1971; Sturm et al., 2002), while its high surface
albedo limits solar radiation absorption and thus inhibits sea
ice melt in spring and summer (e.g., Warren, 1982; Grenfell
and Perovich, 1984; Perovich et al., 2002). Conversely, fresh-
water production from snowmelt facilitates melt pond forma-
tion in spring–summer which lowers the surface albedo and
promotes sea ice melt (Eicken et al., 2002, 2004). The ac-
cumulation of snow on sea ice also modulates the freshwater
flux into the ocean, a key component of the freshwater budget
of the Arctic (e.g., Serreze et al., 2006).

Estimates of snow depth on sea ice are also a required in-
put for deriving sea ice thickness from satellite altimetry, e.g.,
from ESA’s CryoSat-2 (e.g., Laxon et al., 2013) and NASA’s
upcoming Ice, Cloud, and land Elevation Satellite (ICESat)
mission (Markus et al., 2017). The altimetry technique in-
volves measurements of sea ice freeboard, the extension of
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sea ice above a local sea level, and estimates of snow depth
to derive sea ice thickness, with snow depth being one of
the primary sources of uncertainty for both laser and radar
altimetry (e.g., Giles et al., 2007). Poor knowledge of snow
density provides a further source of uncertainty through its
influence on the ice freeboard and radar penetration into the
snowpack (e.g., Giles et al., 2007; Kern et al., 2015).

Unfortunately, direct observations of snow depth and den-
sity across the polar oceans are very limited, due to diffi-
culties in remotely sensing this relatively thin (O(10 cm))
and heterogeneous medium and logistical challenges asso-
ciated with in situ data collection. Passive microwave data
have been used to estimate snow depth over first-year ice
on a basin scale across both poles (e.g., Markus and Cav-
alieri, 1998; Comiso et al., 2003; Maass et al., 2015), al-
though these data are arguably more relevant for the first-
year-dominated Antarctic sea ice pack and tend to underes-
timate snow depth in deformed sea ice regimes (e.g., Worby
et al., 2008; Brucker and Markus, 2013). Combinations of
satellite and/or airborne sensors with variable snow penetra-
tion depths are also being explored as a means of producing
basin-scale snow depth estimates (e.g., Armitage and Rid-
out, 2015; Guerreiro et al., 2016; Kwok and Markus, 2017),
although this approach is still in its infancy and has limited
temporal coverage. NASA’s Operation IceBridge has pro-
vided airborne measurements of snow depth on sea ice since
2009 (Kurtz et al., 2013). However, the Arctic snow depth
data collected are primarily limited to the western Arctic sea
ice cover in spring (the spring 2017 campaign also included
a flight over the eastern Arctic Ocean), while the Southern
Ocean data have only been briefly explored to date (e.g.,
Kwok and Maksym, 2014). For the Arctic, a climatology of
snow depth produced from Soviet drifting station data col-
lected prior to 1991 (Warren et al., 1999) is still commonly
used as a basin-scale snow depth product. The Soviet drift-
ing station data also provide the only observationally based
basin-scale assessment of snow density currently available.
This snow climatology is expected to be outdated due to
the rapid changes experienced in the Arctic climate system
over the last few decades (Webster et al., 2014), although re-
cent efforts have been made to modify this climatology based
on ice type (halving the climatology over first-year ice, e.g.,
Laxon et al., 2013; Kwok and Cunningham, 2015).

Due to these observational limitations, the sea ice com-
munity often utilizes simple models of snow depth forced
by reanalyses (primarily snowfall data) (e.g., Maksym and
Markus 2008; Kwok and Cunningham, 2008; Blanchard-
Wrigglesworth et al., 2018). More sophisticated snow on sea
ice models are available, such as SnowModel, a terrestrial
snow model recently adapted for sea ice environments (Lis-
ton et al., 2018), as well as the prognostic snow layer in-
cluded in sea ice climate model components, such as the Los
Alamos Sea Ice Model (CICE; Hunke and Lipscomb, 2010)
and the Louvain-la-Neuve Sea Ice Model (LIM), which

have recently undergone various improvements to their snow
physics (Holland et al., 2011; Lecomte et al., 2015).

In this study, we present a new model to derive snow depth
(and density) across the Arctic Ocean. Our aim is to develop
a model of physical and computational simplicity to allow
for a detailed assessment of the sensitivity of snow depths
to the various input forcing data needed to produce seasonal
basin-scale snow depths. The spread in reanalysis-derived
snowfall estimates over the Arctic Ocean is high (Boisvert
et al., 2018), while the importance and uncertainty of other
forcing data (e.g., ice concentration and drift) are still largely
unknown. We also wanted a model that could be forced with
observed ice concentration and drift to help accurately con-
strain the seasonal sea ice cycle – a challenge for the more so-
phisticated sea ice models described above. Our overall goal
is that NESOSIM can be used to produce reliable basin-scale
daily snow depth and density estimates needed for satellite
altimetry calculations of sea ice thickness for both histor-
ical analyses and near-real-time operations across the po-
lar oceans. We thus expect the model to increase in com-
plexity with future model developments, e.g., new parame-
terizations or improvements to existing parameterizations as
needed. A secondary utility of the model will be the produc-
tion of daily/monthly/seasonal snow depths from reanalysis
data that can help guide climate modeling research efforts
addressing the representation and importance of snow on sea
ice in the global climate system.

In the following sections, we present and describe the
model configuration/physics, the sensitivity of the model to
the input forcing data (e.g., reanalyses snowfall, satellite-
derived ice drifts) and model calibration/validation efforts.
We focus this initial study solely on the Arctic; however, our
plan is for the model to be applied and tested in a Southern
Ocean framework in the near future. We conclude by look-
ing ahead to potential improvements in the model physics
and planned future activities related to our efforts to improve
our understanding of snow on sea ice.

2 Model description

The NASA Eulerian Snow On Sea Ice Model (NESOSIM) is
a three-dimensional, two-layer (vertical) Eulerian snow bud-
get model developed with the primary aim of producing daily
estimates of snow depth and density across the polar oceans.
NESOSIM includes several parameterizations that represent
key mechanisms of snow variability through the snow accu-
mulation/growth season and two snow layers to broadly rep-
resent the evolution of both old, compacted snow and new,
fresh snow. NESOSIM is not currently configured to produce
snow depth estimates through the melt season (late spring
through summer) due to the lack of surface melt processes
included in this initial model formulation. The NESOSIM
v1.0 model schematic is shown in Fig. 1.
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Figure 1. Schematic of the NASA Eulerian Snow On Sea Ice Model (NESOSIM) v1.0 presented in this study. The red (blue) text indicates
processes that result in a loss (gain) of snow. “Dynamics” indicates the combination of ice–snow advection and convergence–divergence
which can cause either loss or gain of snow.

We decided on a Eulerian snow budget approach (as op-
posed to a Lagrangian approach, e.g., Kwok and Cunning-
ham, 2008) for a number of reasons: (i) it provides a frame-
work flexible to the availability (or lack of) ice drift data,
increasing the utility of the model in regions/time periods
where ice drift data might be lacking; (ii) it provides a simple
assessment of the spatial significance of the parameterized
budget terms included in the model, including ice dynam-
ics; and (iii) the parameterizations developed in this frame-
work can be more easily transferred to other Eulerian sea ice
models (e.g., the sea ice climate model component CICE) in-
cluded in general circulation models (GCMs). The following
subsections detail the model setup and various parameteriza-
tions currently included in NESOSIM.

2.1 Model configuration

NESOSIM v1.0 includes two vertical layers on an x–y hor-
izontal grid, with each horizontal grid cell and snow layer
featuring a prognostic snow depth and fixed snow density.
This two-layer approach was taken to represent the strong
differences in properties between dense snow, associated
with wind slab, and fresh snow from recent snowfall, while
keeping the model computationally efficient and the model
physics easily trackable. As stated previously, our plan is that
NESOSIM will be used for studying snow on sea ice across

the Arctic and Southern oceans; however, for this initial anal-
ysis, we run the model on a 100km × 100km polar stereo-
graphic grid covering the Arctic Ocean and peripheral seas
(model domain shown later in Fig. 5). This grid resolution
was chosen due to considerations of computational efficiency
and the horizontal resolutions of the various input data. The
model is forced with daily data of snowfall and near-surface
winds from reanalysis data, satellite passive microwave ice
concentration and satellite-derived ice drifts.

At each daily time step, an effective snow depth within
each grid cell is produced from our various snow budget
terms (described in the following subsections) using a for-
ward Euler method as

hs (t + 1,0,x,y)= hs (t,0,x,y)+1hacc
s (t,x,y)

+1h
dyn
s (t,0,x,y)+1hwp

s (t,0,x,y)+1hbs
s (t,x,y), (1)

and

hs (t + 1,1,x,y)= hs (t,1,x,y)+1h
dyn
s (t,1,x,y)

+1h
wp
s (t,1,x,y) , (2)

where t denotes the daily time index, the second index indi-
cates the relevant snow layer (0= new, 1= old), and x and y
are the horizontal grid indices. NESOSIM v1.0 includes two
vertical layers: a “new” layer, ρn

s , which represents recent

www.geosci-model-dev.net/11/4577/2018/ Geosci. Model Dev., 11, 4577–4602, 2018



4580 A. A. Petty et al.: NESOSIM

snowfall, and an “old” layer, ρo
s , which represents snow that

has undergone wind compaction and snow grain metamor-
phism (Colbeck, 1982; Sturm and Massom, 2017). These two
fixed snow densities are justified in more detail in the follow-
ing subsection. We track the evolution of an effective snow
depth within each grid cell (the volume of snow per unit grid
cell area) for simplicity. The actual snow depth over the ice
fraction is calculated by dividing the effective grid-cell snow
depth by the grid-cell ice concentration.

We also calculate a bulk snow density, which is the
weighted average density across the two snow layers, as

ρb
s (t,x,y)=

(
hs (t,0,x,y)ρn

s +hs (t,1,x,y)ρo
s

)/
(
hs (t,0,x,y)+hs (t,1,x,y)

)
. (3)

Note that the bulk snow density is masked if the respective
ice concentration in the given grid cell is less than 15 %, or
the effective snow depth is less than 2 cm. While the model
tracks the snow budget terms for all grid cell ice concentra-
tions, only grid cells with an ice concentration above 15 %
are shown in the analysis, to prevent spurious interpretations
in regions of near open water conditions.

Each annual model run is initialized in the middle of sum-
mer (default of 15 August; rationale discussed in Sect. 2.5)
and run until the following spring (1 May). This early sum-
mer start time was chosen to include the significant snow-
fall expected across the central Arctic through August (Ra-
dionov et al., 1997; Warren et al., 1999; Boisvert et al., 2018)
while also avoiding the periods of significant snowmelt in
late spring to early summer/midsummer. We acknowledge
that this end-of-August time period still likely includes sur-
face melt events that are not captured/included in this model
but are hoped to be addressed in future model developments.
We also apply a variable initial snow depth (at t = 0) across
our model domain, as discussed in Sect. 3.4. New ice that
subsequently forms in a given grid cell is assumed to be snow
free.

2.2 Snow accumulation

To accumulate snow on a given grid cell, the snowfall wa-
ter equivalent from our reanalysis field is converted to snow
depth using a representative snow density. Snow pit and den-
sity data from the Surface Heat Budget of the Arctic Ocean
(SHEBA) experiment and the Soviet drifting ice station data
helped guide the parameterization of our seasonal snow den-
sity evolution. Initially, snow accumulates into the new, fresh
snow layer within a given grid cell as

1hacc
s (t,x,y)= Sf (t,xy)A(t,x,y)/ρ

n
s , (4)

where Sf (in units of kg m−2) is the gridded daily snowfall
across the model domain and A is the gridded daily ice con-
centration. The density of the new snow layer is fixed at
ρn

s = 200 kg m−3. This value implicitly represents a combi-
nation of cold, dry snowfall (∼ 150 kg m−3) and wet snowfall

(∼ 230 kg m−3) based on direct observations over Arctic sea
ice (Radionov et al., 1997; Sturm et al., 2002).

Snow can be transferred from the new snow layer to the
old snow layer depending on the strength of the near-surface
wind forcing. The old snow layer is an implicit combina-
tion of two layers that, on average, comprise the major-
ity of the snowpack bulk mass: wind slab and depth hoar
(Sturm et al., 2002; Sturm, 2009). The density of wind slab
ranges between ∼ 300 kg m−3 and ∼ 410 kg m−3 on average
(Colbeck, 1982; Radionov et al., 1997; Warren et al., 1999;
Sturm et al., 2002), while depth hoar has an average density
of ∼ 150–250 kg m−3 (Colbeck, 1982; Sturm et al., 2002).
Based on SHEBA data, the Arctic snow cover consists of
slightly more wind slab than depth hoar, comprising ∼ 80 %
of it collectively (Sturm et al., 2002). For this reason, we use
a weighted average of the higher-end values of wind slab and
depth hoar as the density value for the old snow layer, ρo

s .
However, we note that the density and ratio of wind slab
and depth hoar layers depend on several factors including
the atmospheric conditions during precipitation events, sea
ice surface roughness, snow depth and the internal snowpack
temperature gradient (Sturm et al., 2002). We did experiment
with alternative snow densities (e.g., the wider spread of 150
and 400 kg m−3) but found this provided worse correspon-
dence with the seasonal snow density evolution compiled
from in situ Soviet station data (introduced in Sect. 3.4).

When wind speeds are greater than 5 m s−1, the change in
snow depth from wind packing between the two snow layers,
respectively, is given as

1h
wp
s (t,0,x,y)=−αTdhs (t,0,x,y)

for U (t,x,y) > ω, (5)
1h

wp
s (t,1,x,y)=

(
ρn

s /ρ
o
s
)
αTdhs (t,0,x,y)

for U (t,x,y) > ω, (6)

where U is the 10 m wind speed, ω is a wind action threshold
for wind packing to occur (default of 5 m s−1), α is a wind-
packing coefficient which determines the fraction of the new
snow layer that is transferred into the old snow layer (default
value of 5.8× 10−7 s−1), and Td is the number of seconds
in our daily time step (equivalent to 86 400 s). The second
grid index in Eq. (2) (values of 0 and 1) represents the ver-
tical snow layers. The wind action threshold of 5 m s−1 was
determined based on observational and modeling studies of
blowing snow in the terrestrial Arctic and sea ice environ-
ments (Pomeroy et al., 1997; Radionov et al., 1997; Sturm
and Stuefer, 2013), while the wind-packing coefficient is a
free, unconstrained parameter in the model.

2.3 Ice–snow dynamics

Snow within a given grid cell can also evolve due to ice mo-
tion. Here, we adapt the ice concentration budget approach
used in, e.g., Holland and Kimura (2016) (and more recently
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in Petty et al., 2018) to snow depth as

1h
dyn
s (t,x,y)=−∇ ·

(
hs (t,x,y)ui (t,x,y)

)
, (7)

where ui is the daily gridded ice motion. As in the ice concen-
tration budget studies discussed above, we can expand this
into a divergence–convergence term and an advection term
as

1hdiv
s (t,x,y)=−hs

(
t,x,y

)
· ∇

(
ui (t,x,y)

)
(8)

and

1hadv
s (t,x,y)=−∇

(
hs (t,x,y)

)
· ui (t,x,y) , (9)

where 1hdiv
s is the change in effective snow depth from

divergence–convergence, i.e., changes due to spatial gradi-
ents in ice motion, and 1hadv

s is the change in snow depth
from advection, i.e., changes due to spatial gradients in snow
depth (assuming constant drift). Note that this parameter is
applied to both “old” and “new” snow layers concurrently.

2.4 Blowing snow lost to leads

Snow within a grid cell can also be lost to leads/open wa-
ter in the ice pack due to the impact of wind forcing, i.e.,
blowing snow lost to leads. This parameter is expected to be
most significant in regions where high lead fractions, wind
speeds and snowfall (e.g., the marginal ice zone in the North
Atlantic sector of the Arctic) are expected to result in signifi-
cant wind-blown snow lost to leads/open water (e.g., Leonard
and Maksym, 2011). Note that we only apply this wind loss
term to the new snow layer as we assume the “old” wind-
packed snow layer is immune to the impact of wind forcing
(e.g., Petrich et al., 2012; Trujillo et al., 2016). The blowing
snow to leads term is calculated as

1hbs
s (t,x,y)=−βTdU (t,x,y)

hs (t,0,x,y)
(

1−A(t,x,y)
)

for U (t,x,y) > ω, (10)

where β is a blowing snow coefficient (default value of
2.9× 10−7 m−1). This is a free, unconstrained parameter in
the model, with its default value chosen through our model
calibration efforts.

We also keep track of snow that enters the ocean through
snowfall into the open water fraction and blowing snow lost
to leads, a quantity of relevance to those interested in the
freshwater budgets of the polar oceans. This is given as

Soce
f (t,x,y)

= Sf (t,x,y)
(

1−A(t,x,y)
)/

ρn
s −1h

bs
s (t,x,y) . (11)

For model testing, we also ran NESOSIM with differ-
ent combinations of the model parameterizations discussed
above. When we turn off the wind-packing parameteriza-
tion, snow remains fixed in the “new” snow layer, despite

the strength of the wind forcing, so the model effectively
becomes a one-layer model. To account for the low bias in
snow density expected by constraining the snow density to
the density of fresh, new snow, we forced this snow layer
with the daily climatological snow density based on Warren
et al. (1999), which we refer to as ρ-W99.

3 Model forcing and calibration/validation data

In the following subsections, we describe the forcing data
and calibration/validation data used in this study, includ-
ing atmospheric forcing data (snowfall and winds), satellite-
derived ice motion, satellite-derived ice concentration, Soviet
drifting station snow depths–densities (for model calibration)
and Operation IceBridge snow depths (for model validation).

3.1 Atmospheric forcing

We use snowfall data provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-Interim
(ERA-I) reanalysis. ERA-I is a global reanalysis that utilizes
a 4-D variational data assimilation scheme (Dee et al., 2011).
We use the 12-hourly ERA-I snowfall data from 15 August
1980 to 1 May 1991 and 15 August 2000 to 1 May 2015. We
use the 0.75◦× 0.75◦ horizontal resolution data, which are
summed to produce daily snowfall estimates across the Arc-
tic. ERA-I snowfall data have been used in previous stud-
ies exploring snow accumulation over Arctic sea ice (e.g.,
Kwok and Cunningham, 2008; Blanchard-Wrigglesworth et
al., 2018), while comparisons of reanalysis-derived precip-
itation data with coastal weather stations suggest ERA-I is
one of the better products available for Arctic studies (Ser-
reze and Hurst, 2000; Lindsay et al., 2014). A more detailed
comparison of snowfall–precipitation estimates over the Arc-
tic Ocean has recently been carried out alongside this study
(Boisvert et al., 2018), which we expect to build on in the
future.

We explore the sensitivity of our results to the input snow-
fall data by forcing the model with snowfall estimates pro-
vided by three additional reanalysis-derived snowfall prod-
ucts. Unfortunately, not all reanalyses provide direct esti-
mates of snowfall (and rainfall) and instead provide just to-
tal precipitation, e.g., the data from the widely used Na-
tional Centers for Environmental Prediction (NCEP) – Na-
tional Center for Atmospheric Research (NCAR) reanaly-
ses 1 and 2, so we focus our analysis on three other com-
monly used reanalyses that provide direct estimates of snow-
fall: the Japanese Meteorological Agency 55-year reanalysis
(JRA-55); NASA’s Modern-Era Retrospective analysis for
Research and Applications (MERRA); and the Arctic Sys-
tem Reanalysis, version 1 (ASRv1), as described below and
summarized in Table 2.

JRA-55. JRA-55 is a global atmospheric reanalysis that
utilizes a 4-D variational assimilation system covering the
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period 1958 to present (Kobayashi et al., 2015). JRA-55 was
developed as an improvement to their previous 25-year re-
analysis (JRA-25), which we do not include in this study.
We use the daily JRA-55 snowfall data from 15 August 1980
to 1 May 1991 and 15 August 2000 to 1 May 2015. The data
were obtained from the National Center for Atmospheric Re-
search’s Research Data Archive at a horizontal resolution
of 0.56◦× 0.56◦ (∼ 60 km), downscaled from the original
1.25◦× 1.25◦ Gaussian grid. The data are being produced
on a near-real-time basis (2- to 6-month data latency).

MERRA. NASA’s MERRA is a global reanalysis that uti-
lizes a 3-D variational data assimilation scheme within the
Goddard Earth Observing System (GEOS-5) data assimi-
lation system (Rienecker et al, 2011). We use the daily
MERRA snowfall data from 15 August 1980 to 1 May 1991
and 15 August 2000 to 1 May 2015. The data are provided
at a horizontal resolution of 0.5◦ (latitude) by 0.66◦ (longi-
tude). Note that an updated version of MERRA (MERRA-2)
is also available, but is known to have a high precipitation
bias compared to the other reanalyses (Boisvert et al., 2018),
so we exclude this from our study.

ASRv1. ASRv1 is a regional reanalysis based on the
Weather Research and Forecasting model (polar WRF) that
utilizes a 3-D variational data assimilation scheme and is
adapted for the polar regions (Hines and Bromwich, 2008).
The ASRv1 data are only available from 2000 to 2012, so
we use the daily snowfall data from 15 August 2000 to
1 May 2012, which is provided at a horizontal resolution of
30km× 30km.

Considering the expected importance and uncertainty of
the reanalysis-derived snowfall for deriving snow depth, we
also produce a synthesized snowfall dataset by taking the me-
dian snowfall across the gridded snowfall products for each
daily grid cell (data referred to as MEDIAN-SF). We use the
gridded ERA-I, JRA-55 and MERRA snowfall data, as these
products all cover the longer-term (1980–2015) time period.

NESOSIM also requires daily estimates of near-surface
winds to drive the wind-packing and wind loss terms, which
we take from the ERA-I reanalysis for all reanalysis model
runs. Jakobson et al. (2012, Fig. 2) show that ERA-I winds
had the lowest biases of several reanalysis-derived near-
surface wind estimates compared to Tara drifting station data.
We compute the magnitude of the winds from the 6-hourly
u− v vectors before averaging to produce a daily (gridded)
wind magnitude dataset.

We linearly interpolate all the daily snowfall (and ERA-
I wind magnitude) estimates onto our 100km× 100km po-
lar stereographic model domain. Gridding scripts written
in Python are included in the NESOSIM GitHub code
repository (https://github.com/akpetty/NESOSIM, last up-
date: 8 November 2018).

3.2 Satellite-derived ice motion data

We primarily make use of the daily Polar Pathfinder ice mo-
tion data, version 3 (Tschudi et al., 2016) made available
through the National Snow and Ice Data Center (the product
is referred to herein as NSIDCv3). A daily ice motion vec-
tor is calculated using a cross-correlation technique applied
to sequential daily satellite images acquired by passive mi-
crowave satellite sensors (i.e., a 1-day lag in parcel tracking)
which are blended via optimal interpolation with estimates
from the International Arctic Buoy Programme (IABP) and
wind data from the NCEP/NCAR reanalysis. The data are
available daily from October 1978 to February 2017 (at the
time of writing) at a horizontal resolution of 25km× 25km.
In this study, we use the daily data from 15 August 1980 to
1 May 1991 and 15 August 2000 to 1 May 2015. We grid the
daily ice motion data onto our 100 km model domain (us-
ing linear interpolation) and smooth the data using a simple
Gaussian filter (as in Holland and Kimura, 2016 and Petty et
al., 2018).

Recent studies have explored the uncertainty in satellite-
derived ice motion data (Sumata et al., 2014) and errors in-
troduced by the NSIDC interpolation methodology (Szanyi
et al., 2016). We thus also explore the sensitivity of the model
results to the input ice motion data by forcing the model with
ice motion estimates provided by three additional satellite-
derived ice motion products, as described below and summa-
rized in Table 3.

Ocean and Sea Ice Satellite Application Facility (OSI
SAF). The European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT) produce a number
of low-resolution sea ice motion products from satellite pas-
sive microwave sensors and scatterometry (Lavergne, 2010).
Here, we use the merged ice motion product, which increases
coverage and reliability over their single-sensor drift prod-
ucts (Lavergne, 2010). The merged drift product uses a 2-day
lag in ice parcel tracking and a continuous maximum cross-
correlation (CMMC) method to optimize the drift product
and has been available daily (October through April) since
2010 at a horizontal resolution of 62.5km× 62.5km.

CERSAT. The Centre ERS d’Archivage et de Traitement
(CERSAT), part of the Institut Français de Recherché pour
l’Exploitation de la Mer (IFREMER), produces a number
of ice motion datasets by merging various combinations of
satellite passive microwave and scatterometry data (Girard-
Ardhiun and Ezraty, 2012). Here, we use data produced from
the merging of Advanced Scatterometer (ASCAT) and the
Special Sensor Microwave Imager (SSM/I) data, which have
been available daily (September to May) since 2007 at a hor-
izontal resolution of 62.5km× 62.5km. Note that CERSAT
provides data using both a 3- and a 6-day lag in the tracking
of ice displacement, but we use the 3-day lag data as this is
closest to the 1-day lag used by the NSIDCv3 product.

Kimura. The Kimura drift data are produced using bright-
ness temperatures obtained by the Advanced Microwave
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Scanning Radiometer for Earth Observing System (AMSR-
E) from January 2003 to September 2011 and the Ad-
vanced Microwave Scanning Radiometer 2 (AMSR2) from
July 2012 to December 2016 using a cross-correlation ap-
proach (see Kimura et al., 2013 for more details). Wintertime
(November–December, January–March) ice motion vectors
are derived using the 36 GHz channel, while the summer-
time drifts used in this study (August–October, April) are
derived using the 18 GHz channel, to maximize the relia-
bility and coverage of the data. The data are provided at a
60km× 60km horizontal resolution.

We use data from these three additional products from
15 August 2010, 2012, 2013 and 2014 to 1 May of the subse-
quent years, a period of coincident data coverage across the
four drift products (including NSIDCv3). We linearly inter-
polate all the daily drift datasets onto the 100km× 100km
polar stereographic model domain used in this study. As
highlighted above, not all the products produce drift esti-
mates in August, or even September, so for those products we
assume no ice motion through this period. To investigate the
importance of ice motion, we also run the model assuming
no ice motion for the entire model simulation (NODRIFT),
as discussed in more detail later.

3.3 Sea ice concentration

We use the daily Bootstrap sea ice concentration (SIC) data,
version 3 (Comiso, 2000, updated 2017), which are produced
from passive microwave brightness temperature estimates
and made available through the NSIDC. We choose to pri-
marily use the Bootstrap over, for example, NASA Team data
(Cavalieri et al., 1996, updated 2017), another commonly
used SIC dataset, as Bootstrap SIC data are less sensitive to
surface melt, producing higher concentrations in general. We
use the NASA Team data in a sensitivity study to explore the
sensitivity of the model to this choice of sea ice concentra-
tion data. Due to differences in satellite orbit and sensor char-
acteristics, the SIC data feature a time-varying pole hole de-
pending on the passive microwave sensor used. As we require
consistent SIC data across the pole hole, we follow the ap-
proach of Petty et al. (2018) and apply a mean SIC calculated
in a 0.5◦ halo around the variable pole hole to all grid cells
within the pole hole. The data are provided at a 25km×25km
resolution polar stereographic grid from 1978 to 2016, and
we use the daily data from 15 August 1980 to 1 May 1991
and 15 August 2000 to 1 May 2015. We linearly interpolate
the daily SIC data onto our 100km× 100km model domain.
Note that a gap in the passive microwave record exists from
3 December 1987 to 13 January 1988, so we do not run the
model through the 1987–1988 winter period.

3.4 Soviet station data and initial conditions

We use in situ snow data collected on the former Soviet
Union’s drifting ice stations for initial model calibration and

to help guide our choice of initial conditions (Radionov et
al., 1997; Warren et al., 1999; Fetterer and Radionov, 2000).
The drifting ice stations were in operation in 1937 and 1954–
1991, although in this study we use the field observations
collected from 1980 to 1991 due to the temporal overlap with
the model forcing data. During the drifting ice stations, snow
depth data were collected every 10 days in 10 m intervals
along a 500 or 1000 m survey line. Snow density measure-
ments were made every∼ 100 m along the same survey lines,
and atmospheric conditions were recorded at near-daily fre-
quencies. Despite their limited spatial coverage, these data
provide the most complete record of snow and atmospheric
conditions to date over the Arctic sea ice pack.

Initial conditions. We initialize the model on 15 August of
each year with a snow depth representing the fraction of snow
assumed to have survived the summer melt season and/or ac-
cumulated during summer. The August snow depth clima-
tology compiled by Warren et al. (1999, referred to herein
as W99) from the Soviet station data suggests significant
amounts of snow (up to 10 cm) are present in late summer,
especially over the central Arctic sea ice north of Green-
land (Radionov et al., 1997). This inclusion of an initial snow
depth was also guided by our preliminary model calibration
studies that showed that including these initial conditions
provided a better match with the seasonal snow depth obser-
vations (calibrations presented later). To produce initial mid-
August snow depths, we use a near-surface air-temperature-
based scaling of the August W99 snow depth climatology
to account for changes in the duration of the summer melt
season (e.g., Markus et al., 2009). Briefly, we calculate the
annual number of days with continuous, above-freezing air
temperatures (taken from the ERA-I reanalysis), which we
refer to here as the summer melt duration. To create an initial
(August) snow depth estimate for a given year, we linearly
scale the W99 August snow depth climatology based on the
summer melt duration of the chosen year and the climatolog-
ical summer melt duration given in Radionov et al. (1997).
If the melt duration is longer than the climatological mean
in a specific region, the scaled August climatology reflects a
reduction in snow depth in August due to the longer melt sea-
son. The snow depth is then distributed evenly over the “old”
and “new” snow layers based on the climatological observa-
tions that some snow persists through summer (Radionov et
al., 1997) and the occurrence of summer snowfall events (Ra-
dionov et al., 1997; Perovich et al., 2017). While admittedly
this is a crude approach for parameterizing an initial snow
depth, our sensitivity studies demonstrated that initial con-
ditions were necessary to improve the comparison with the
drifting station observations (as presented and discussed in
the following section) and indicate that late summer snow-
fall events might play a significant role in establishing the
snow cover on Arctic sea ice prior to the fall–winter season
(Warren et al., 1999). The August W99 snow depth climatol-
ogy and temperature-scaled initial snow depth estimates (for
2012 and 2013) are shown in Fig. 2.
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Figure 2. (a) Warren climatology of August snow depth, (b, c) the initial conditions used in this study (broadly representing the snow depth
as of 15 August) for 2012 and 2013, respectively, calculated using near-surface air temperature scaling.

Model calibration. For our model calibration, we use the
raw snow depth and density data from the Soviet drifting sta-
tions 25, 26, 30 and 31. The data represent the average of
a given survey line. The majority of survey lines remained
constant each time they were sampled, so the dataset is a
near-continuous time series with a 10-day temporal reso-
lution. Most survey lines were 1000 m in length, although
in the earlier part of the historical record (e.g., before the
1980s), some ice stations had survey lines that were 500 m
in length. Maps of the drifting stations are given in the sup-
plementary information (Fig. S3 in the Supplement). Briefly,
station 25 drifted from the central Arctic to the East Siberian
Sea providing data from autumn 1981 to spring 1984, station
26 drifted around the north of the East Siberian Sea provid-
ing data from autumn 1983 to spring 1984, station 30 drifted
around the north of the East Siberian Sea providing data from
autumn 1988 to winter 1991, and station 31 drifted around
the Beaufort Sea providing data from winter 1989 to winter
1991. We use a simple nearest neighbor algorithm to match
the data to the nearest model grid cell for the relevant day the
drifting station data were collected.

3.5 NASA’s Operation IceBridge data

We compare our NESOSIM snow depth estimates with
spring snow depths collected by NASA’s Operation Ice-
Bridge (OIB) airborne mission. NASA’s OIB mission began
collecting airborne observations of the polar regions in 2009,
bridging the gap between NASA’s ICESat mission, which re-
tired in 2009, and the future ICESat-2 mission scheduled for
launch in the summer of 2018 (Markus et al., 2017). The OIB
aircraft carry a suite of instruments designed to measure both
land and sea ice, including their overlying snow cover. Here,

we primarily make use of snow depth estimates derived from
the ultra-wideband snow radar (Panzer et al., 2013), which
have a footprint size over sea ice of 5–10 m. These snow
depths are thought to carry an uncertainty of several centime-
ters, although this depends strongly on the ice–snow condi-
tions, the particular snow radar system being used and vari-
ous other factors, e.g., geolocation errors associated with the
plane pitch and roll (e.g., Kurtz et al., 2013; Kwok et al., 2017
and references therein). Various algorithms have been devel-
oped to produce snow depth estimates from the OIB snow
radar data (Kwok et al., 2017), with the products showing
broad agreement in the regional snow depth distributions, but
significant intraregional and interannual differences, due pri-
marily to changes in the radar configuration and algorithm
tuning. To account for these differences, we use the snow
depth data from the (i) snow radar layer detection (SRLD)
(Koenig et al., 2016), (ii) NASA Goddard Space Flight Cen-
ter (GSFC) (Kurtz et al., 2013) and (iii) Jet Propulsion Lab-
oratory (JPL) (Kwok and Maksym, 2014; Kwok et al., 2017)
at the raw 5–10 m snow radar resolution from 2009 to 2015.
We bin the raw OIB snow depth data onto our 100 km model
grid and keep only the grid cells that included a significant
quantity (> 1000 points) of the raw snow depth data. The
OIB data are provided for various days through spring of the
relevant campaign (data from mid-March to early May, de-
pending on the campaign year), so we grid the OIB data daily
and compare this with coincident (daily) NESOSIM snow
depth estimates. The OIB data are collected mainly over the
western Arctic sea ice, limiting our validation efforts to this
region of the Arctic.
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Figure 3. Comparison of NESOSIM snow depth (a, c) and snow density (b, d) data with drifting Soviet station data collected between 1981
and 1991. Panels (a, b) show the mean seasonal evolution of the snow depth and density for the model (blue) and Soviet station data (black),
with the data binned into the different months the data were collected. The shaded area represents 1 standard deviation from the annual
monthly mean. Panels (c, d) show scatter plots of all points for which there were temporal crossovers. The r values indicate the correlation
coefficient, while the colors indicate the different stations that collected the data. The NESOSIM data are from the default/ERA-I model
configuration.

4 Model calibration and analysis

We carried out model calibration over the period 15 August
1980–1 May 1991 due to the coincident Soviet station data
available during this period. As noted previously, this ex-
cludes the 1987–1988 winter season due to the lack of com-
plete sea ice concentration data available during this period.
As stated earlier, our initial calibration efforts involved man-
ually tuning NESOSIM to improve the general fit with the
mean seasonal snow depth–density cycles shown in the So-
viet station data. Specifically, we included the temperature-
scaled initial August snow depths and tuned both the wind-
packing coefficient, α (Eq. 5), and blowing snow coefficient,
β (Eq. 6). We decided against a more optimized calibra-
tion effort due to limitations in the calibration data, i.e., its
sparse availability in space–time and differences in spatial
scales. We instead used the Soviet station data to guide our
model choices to achieve a more realistic seasonal cycle in
snow depth and density. We also decided against specific
model configuration parameter tuning due to these limita-
tions in the calibration data; however, this should be con-

sidered when analyzing the model performance, especially
with regard to our validation efforts (i.e., more sophisticated
and/or configuration-specific tuning could improve the com-
parisons shown).

In Fig. 3, we show comparisons of our NESOSIM re-
sults using the default model configuration (summarized in
Table 1) and ERA-I snowfall forcing with the drifting sta-
tion snow depth and density data. Figure 3 shows both the
mean seasonal cycle based on all drifting station data points
and coincident model grid cell values over this time period
binned monthly and the correlations of snow depth and snow
density for all coincident data (described in Sect. 3.4). Our
calibrated NESOSIM results agree well with the mean sea-
sonal cycle in snow depth (r = 0.96 with a low bias of ∼ 3
to 7 cm) and snow density (r = 0.97, no significant seasonal
bias) in the drifting station data. The large spread in the
in situ snow density in September–October is due to the sur-
vival of snow through the summer melt season (high density)
and recent autumn snowfall (low density). The correlations
between the raw drifting station data and NESOSIM snow
depths are lower, but still strong (r = 0.74), while the snow
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Figure 4. Differences between the mean (1980–1991) seasonal cycles in the drifting station data against various configurations of NESOSIM.
The different symbols represent different levels of model sophistication – ρ-W99: climatological Warren snow density, ρ-2lyr: default
prognostic two-layer snow density, WP: wind-packing parameterization, BSL: blowing snow loss parameterization, IC: initial conditions.
NO indicates that the parameterization/initial conditions have been turned off. The different colors then represent a doubling of individual
model parameters, with all other settings fixed to the default settings (see Table 1). The black crosses and line represent the default/ERA-I
results (as shown in Fig. 3).

density correlation strength is moderate (r = 0.58), suggest-
ing the model may be better capturing regional variability
in snow depth over snow density. It should be noted, how-
ever, that snow density is highly variable in space and sub-
ject to large measurement uncertainties when collected in situ
(Sturm, 2009). In general, the moderate–high correlations
and seasonal comparisons provide confidence in the utility
of NESOSIM for estimating snow depths across the Arctic.

In Fig. 4, we highlight the sensitivity of NESOSIM to
the chosen model configuration/sophistication, broadly rep-
resenting the heuristic model tuning that was undertaken.
First, we tested the results of NESOSIM with different com-
binations of the various model parameterizations included.
Note that, as discussed at the end of Sect. 2, when we turn
off the wind-packing parameterization, the model essentially
becomes a one-layer model, so we use a fixed Warren et
al. (1999) seasonal snow density climatology (constant den-
sity value across the Arctic). As this is based on the same
drifting station data we compare our results to, it is perhaps
unsurprising that this configuration provides a better match
with the seasonal drifting station snow depth cycle, includ-
ing deeper snow depths (and reduced low snow depth bias)
from November to April. We chose to develop NESOSIM to
allow for the production of snow depths that agree well with
the old drifting station snow climatology but are able to also
respond to the expected interannual variability and trends in
Arctic climate over recent decades – hence the decision to
develop and include a simple bulk density parameterization.

Including the blowing snow loss parameterization resulted
in slightly lower snow depths (∼ 2 cm), but no significant
change in snow density. This parameterization can impact the
bulk density implicitly by reducing the amount of fresh snow
contributing to the total snow depth–density. As the drifting
station data are collected primarily within the central Arctic
where ice concentrations are close to 100 %, it was expected
that including blowing snow loss would not result in signifi-
cant differences, as this parameterization is expected to pro-
vide more of an impact in lower ice concentration regimes,
where unfortunately in situ snow depth data are lacking. In-
cluding the initial snow depths resulted in a small increase
in snow depth and density, especially earlier in the seasonal
cycle, as expected, reducing the low bias compared to the
drifting station data. The seasonal correlations were similarly
high across these model configurations, highlighting the pri-
mary role of the model configuration choices in determining
the general bias of the seasonal snow depth–density cycle.

As a simple demonstration of the sensitivity of the model
to the poorly constrained–unconstrained model parameters
introduced in NESOSIM (the wind-packing threshold, ω, the
wind-packing coefficient, α, the blowing snow loss coeffi-
cient, β), Fig. 4 also shows results from NESOSIM with
these three model parameters individually doubled (based
on the default/ERA-I configuration). Doubling the wind-
packing threshold, ω, (from 5 to 10 m s−1) has a large im-
pact on both the snow depth and density. By essentially re-
ducing the likelihood for wind packing to occur, the snow
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Table 1. Default model forcings and parameter settings used by NE-
SOSIM.

Model variable

Snow accumulation (m), hacc
s

Snowfall into the ocean (m), Soce
f

Snow dynamics (m), hdyn
s

Snow divergence (m), hdiv
s

Snow advection (m), hadv
s

Wind packing (m), hwp
s

Blowing snow lost to leads (m), hbs
s

Effective snow depth (m), hs
Physical snow depth (m), hs/A

Bulk snow density (kg m−3), ρb
s

Model parameter Default setting

New snow density (kg m−3), ρn
s 200

Old snow density (kg m−3), ρo
s 350

Wind-packing coefficient (s−1), α 5.8× 10−7

Blowing snow coefficient (m−1), β 2.9× 10−7

Wind action threshold (m s−1), ω 5

Forcing data Default setting

Snowfall (kg m−2), Sf ERA-I/MEDIAN-SF
(as specified)

Near-surface winds (m s−1), U ERA-I
Sea ice concentration, A Bootstrap
Sea ice motion (m s−1), ui NSIDCv3

(Polar Pathfinder)

accumulates and remains in the fresher “new” snow layer for
longer, significantly reducing the bulk snow density and in-
creasing the seasonal snow depths. While this does produce
snow depths that appear to agree better with the drifting sta-
tion data, the low bias in the seasonal snow density suggests
this is unphysical. Doubling the wind-packing coefficient, α
(from 5.8× 10−7 to 1.16× 10−6), has broadly the opposite
effect, as expected, reducing the snow depths by increasing
the transfer of snow from the fresher “new” snow layer to
the denser “old” snow layer. Doubling the blowing snow loss
coefficient, β (from 2.9× 10−7 to 5.8× 10−7), has a negli-
gible impact, again likely due to the location of the in situ
data away from the lower concentration ice regimes where
this process is more significant.

As stated earlier, the differences in spatial scales and data
coverage (time and space) make interpreting these compar-
isons/calibrations challenging. Specific model configurations
may be required based on user demands, and our expecta-
tion is for these calibrations to evolve as new calibration
data are made available and physical parameterizations intro-
duced/updated. Note that we also compared the simulations
of NESOSIM forced by the MERRA and JRA-55 snowfall
data (Figs. S2 and S3). In general, the seasonal correlations
with the drifting station data were similar to the ERA-I re-

sults, but the correlations of the raw data were slightly lower
for JRA-55 (r = 0.69 for snow depth and r = 0.58 for snow
density) and significantly lower for MERRA (r = 0.44 for
snow depth and r = 0.57 for snow density). As discussed in
Sect. 3, it is likely that specific model configuration tuning
could improve these comparisons and the later validation ef-
forts, but we decided against a more optimized calibration
approach due to the limitations in the Soviet station data.

As discussed in Sect. 3.1, we also produced a synthesis
snowfall dataset (MEDIAN-SF) using the median snowfall
across the gridded ERA-I, JRA-55 and MERRA datasets.
The MEDIAN-SF forced results are similar to the ERA-I re-
sults (Fig. S4), in general, and show correlations similar to
ERA-I and JRA-55 (r = 0.68 for snow depth and r = 0.58
for snow density). The MEDIAN-SF seasonal snow depths
have a reduced low bias compared to the ERA-I results, al-
though this difference is small. For the rest of this analysis,
we choose to mainly focus on the MEDIAN-SF forced re-
sults using the default configuration (Table 1) for simplicity.
We provide a further assessment of the impact of the snowfall
data in the following regional analysis and when we analyze
the regional distributions across the more recent (2000–2015)
time period.

5 Sensitivity studies and model validation

Here, we present and analyze the NESOSIM results from
2000 to 2015, a period broadly defined as the New Arctic,
considering the rapid sea ice declines during this time pe-
riod (e.g., Serreze and Stroeve, 2015). This period also cov-
ers the temporal range of NASA’s ICESat (2003 to 2008)
and ESA’s CryoSat-2 (2010 onwards) satellite altimetry mis-
sions, meaning the snow depth–density results presented here
are planned to be of more relevance for those estimating sea
ice thickness from these freeboard measurements. The period
also includes temporal overlap with the ASR forcing data and
various satellite-derived ice motion products used. We pro-
vide examples of the model evaluation figures for the 1980s
time period in the Supplement (Figs. S5 and S6). A more de-
tailed study accounting for differences in the input forcing
data is likely needed before any conclusions can be made
regarding potential trends in seasonal Arctic snow depths,
which is beyond the scope of this paper. We hope to explore
trends in our simulated snow depths in future work, however.

We focus our analysis on the Arctic Ocean (AO, every-
thing north of 60◦ N) and three specific regions that were
chosen to represent different components of the Arctic sea
ice–climate system: (i) the central Arctic (CA, captures the
thicker/multi-year ice over the north of Greenland), (ii) the
eastern Arctic (EA, the increasingly first-year-ice-dominated
sea ice regime) and (iii) the North Atlantic (NA, a region in-
fluenced by the transpolar ice drift and the North Atlantic
storm track), as shown in Fig. 5.
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Table 2. Summary of the four different reanalysis datasets used in this study (data availability often subject to change/updates; information
is given at the date of submission).

Reanalysis Producer Resolution∗ Coverage

ERA-Interim European Centre for Medium-Range Weather 0.75◦× 0.75◦ 1979–present
Forecasts (NRT, 2–3 months of data latency)

ASRv1 Various contributors; see Bromwich et al. (2016) 30km× 30km 2000–2012
JRA-55 Japanese Meteorological Agency 0.56◦× 0.56◦ 1958–present

(NRT, 2–3 months of data latency)
MERRA NASA’s Global Modeling and Assimilation Office 0.5◦× 0.66◦ 1979–Jun 2016

∗ Different resolutions available in some cases. NRT: near-real time.

Table 3. Summary of the different ice motion datasets used in this study based on information obtained at the time of submission.

Product Resolution Daily lag Data source Coverage Availability

NSIDCv3 25 km 1 day AVHRR, SMMR, SSM/I, Oct 1978–Feb 2017 Public
AMSR-E, IAPBs, NCEP-R1

OSI SAF 62.5 km 2 days AMSR-E, AMSR2, SSM/I, SSMIS, ASCAT∗ Dec 2009–present Public/NRT

Kimura 60 km 1 day AMSR-E, AMSR2 Jan 2003–Sep 2011/ On request
Jan 2003–Sep 2011/

CERSAT 62.5 km 3 days ASCAT∗, SSM/I Jan 2007–present Public/NRT

∗ These agencies produce drift datasets using different individual and/or combinations of satellite sensors not utilized in this study. NRT: near-real time.

Figure 5. Map of the Arctic model domain and regions used in this
study: AO: Arctic Ocean, CA: central Arctic, EA: eastern Arctic,
NA: North Atlantic; BS: Bering Sea, LS: Labrador Sea (peripheral
seas also discussed in the paper).

Figure 6 shows the seasonal snow depth and density evolu-
tion across our four study regions for the 2000–2015 time pe-
riod using the default/MEDIAN-SF configuration (Table 1).
The AO and CA regions especially show strong initial in-
creases in snow depth through fall (August to October) with
the snow depth increasing at a slower rate from November
to May, which is in good agreement with the W99 climatol-
ogy. The EA and NA regions show a more uniform increase
in snow depth from August to April. The NA region shows
more daily snow depth variability, which was expected due
to the strong ice drifts and the location of the NA storm track
where passing cyclones can deposit large quantities of snow
in a short period of time. It is also worth noting the small
decline in snow depth through September–October in the EA
region which is driven by reduced snowfall and snow densi-
fication due to wind packing through this period. By 1 May,
the mean snow depths (and interannual variability, calculated
as 1 standard deviation of the annual values) are given as
27.8±1.9 cm (AO), 31.8±4.0 cm (CA), 23.2±2.9 cm (EA)
and 42.5± 8.1 cm (NA). The 1 May snow depth results are
summarized in Table 4 to aid comparison with the snow
depths produced in the following sensitivity studies.

We see stronger increases in the bulk snow density through
fall across all regions (also shown in Fig. 4), with this den-
sity increase slowing through winter–spring, especially in the
CA region, after December. The AO, CA and NA regions
also show an interesting initial decrease in snow density,
which is driven by the accumulation of new snow (with a
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Figure 6. Seasonal snow depth (black) and bulk density (green) evolution across the four study regions (shown in Fig. 5) initiated from
15 August 2000–2014 and run until 1 May of the following year using the MEDIAN-SF/parameter settings (Table 1). The thick lines show
the mean values over this time period, while the shaded areas represent the interannual variability (1 standard deviation).

lower density) compared to the equal mix of old and new
snow densities included in our initial conditions. The mean
bulk snow densities as of 1 May are given as 309±2 kg m−3

(AO), 323±4 kg m−3 (CA), 311±3 kg m−3 (EA) and 318±
6 kg m−3 (NA).

5.1 Budget analysis

Here, we discuss the relative contributions to the seasonal
snow depth evolution from the various snow budget terms
currently included in NESOSIM. Results of the various NE-
SOSIM budget terms and the total snow depth and bulk den-
sity are shown in Fig. 7 across our four study regions for this
2000s time period. The black (green) lines and/or shading
that represent the snow depth (bulk density) are the same as
the results shown in Fig. 6.

Across the AO region, we see that accumulation is higher
than snow depth, as expected (higher by ∼ 30 cm by 1 May,
around double the 1 May snow depth), with wind-packing
(∼ 20 cm) and wind-blowing snow lost to leads (∼ 10 cm),
providing significant reductions in snow depth. In the EA and
CA regions especially, the blowing snow loss term is negligi-
ble, while in the NA region it is more significant (contributes
a sink of ∼ 18 cm by 1 May). The NA region also shows a
small (∼ 2 cm) increase (decrease) in snow depth driven by
snow–ice divergence (ice–snow advection).

To further explore the different budget terms, we also show
maps of the various budget terms as of 1 May over the
same time period, as shown in Fig. 8. The maps highlight
that many of these terms, especially the ice–snow dynam-
ics (advection and convergence), exhibit high spatial vari-
ability, which the regional means discussed previously mask.
For example, the NA region shows a strong mix of posi-
tive snow advection and convergence adjacent to the coast

of Svalbard (i.e., snow is advected into the region and is con-
strained against the coastline) but an advection out of the re-
gion further to the north as the ice either drifts down towards
Svalbard/the Fram Strait or into the central Arctic.

The ice dynamic behavior around the pole is thought to be
spurious considering interpolating issues across the pole hole
in the NSIDCv3 drift product (Szanyi et al., 2016), which is
one reason why we did not include this region in our regional
analysis. In the following section, we assess the sensitivity
of our results to the input ice motion dataset, which will pro-
vide some further information as to the reliability of these
dynamic budget terms.

As stated earlier, we hope to explore these decadal and re-
gional differences more in future work. However, it is worth
noting that the regional snow budget results and 1 May bud-
get maps using the same default/MEDIAN-SF configuration
but run for the 1980s time period were similar to the 2000s
time period results (Figs. S4 and S5). The noteworthy dif-
ferences in the budget terms include a less significant in-
crease in blowing snow lost to leads in the CA region and
less convergent driven snow depth increases in the new pe-
riod, although accumulation and wind packing still dominate
the budget terms for both periods. The NA results also do
not show the advection-driven reduction in snow depth in
March–April that was present in our 2000s results.

5.2 Reanalysis sensitivity study

In Fig. 9, we show the seasonal–regional snow depths from
NESOSIM forced by the various reanalysis-derived snow-
fall estimates (ERA-I, JRA-55, MERRA and MEDIAN-SF)
from 2000 to 2015 and the ASRv1 forced results which are
only available up to 2012, as described in Sect. 3.1. The
1 May results are summarized in Table 4. In general, the re-
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Table 4. Mean snow depths as of 1 May across the four study regions (rows, regions given in Fig. 5) for NESOSIM using different forcings
and time periods (columns). The numbers in brackets represent interannual variability and are calculated as 1 standard deviation of the annual
values. The default NESOSIM configuration is MEDIAN-SF snowfall, ERA-I winds, NSIDCv3 ice motion and Bootstrap ice concentration.

NESOSIM configuration 1 May snow depth (cm)

Arctic Ocean Central Arctic Eastern Arctic North Atlantic
(AO) (CA) (EA) (NA)

Snowfall sensitivity results

2001–2015 (ASRv1) 21.4 (1.5) 23.5 (3.2) 16.6 (2.7) 37.4 (5.4)
2001–2015 (MERRA) 30.6 (2.6) 31.6 (3.1) 25.8 (3.6) 45.7 (9.0)
2001–2015 (JRA-55) 32.0 (1.9) 37.4 (4.7) 25.4 (3.3) 50.4 (9.5)
2001–2015 (ERA-I) 25.5 (1.7) 30.7 (4.1) 22.0 (2.5) 38.5 (7.3)
2001–2012 (MEDIAN-SF) 27.8 (1.9) 31.8 (4.0) 23.2 (2.9) 42.5 (8.1)

Ice drift sensitivity results

2011–2015∗ (MEDIAN-SF/NODRIFT) 27.3 (2.2) 32.4 (2.9) 24.8 (4.0) 38.7 (10.3)
2011–2015∗ (MEDIAN-SF/OSI SAF) 26.3 (2.2) 32.9 (3.8) 23.4 (3.7) 38.9 (9.6)
2011–2015∗ (MEDIAN-SF/Kimura) 25.7 (2.2) 32.9 (4.3) 21.2 (3.5) 38.9 (10.6)
2011–2015∗ (MEDIAN-SF/CERSAT) 26.3 (2.2) 33.1 (3.9) 23.2 (3.6) 38.5 (10.0)
2011–2015∗ (MEDIAN-SF/NSIDCv3) 26.7 (2.2) 32.4 (4.6) 22.9 (3.5) 39.9 (9.1)

Ice concentration sensitivity results

2001–2015 (MEDIAN-SF/NASA Team) 23.4 (1.7) 28.0 (4.0) 20.3 (2.8) 35.4 (7.8)

∗ Note that these 2011–2015 ice motion sensitivity runs exclude the 2012–2013 winter season due to the lack of Kimura drift data.
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Figure 7. Seasonal snow budget evolution across the four study regions (shown in Fig. 5), initiated from 15 August 2000 to 2014 and run
until 1 May of the following year using the default/MEDIAN-SF NESOSIM simulations. The thick lines show the mean daily regional values
over this time period, while the shaded areas represent the interannual variability (1 standard deviation).

sults show significant differences in the seasonal snow depths
across all regions (up to ∼ 10 cm across all regions). The
rankings of snow depth between the different products are
broadly consistent across the four regions, with JRA-55 and
MERRA producing consistently higher snow depths (except

in the EA region, where MERRA produces slightly higher
snow depths) and ERA-I consistently lower. The MEDIAN-
SF snow depths are, in general, slightly higher than the
ERA-I forced snow depths. In the CA region, we can see
that MERRA, ERA-I and MEDIAN-SF forced results are
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Figure 8. Snow budget terms as of 1 May, averaged over the 2001 to 2015 time period using the default/MEDIAN-SF NESOSIM simulations.
The black lines show the four study regions used throughout this study. Panels (a) to (g) are integrals from the 15 August start date. Note the
different color bar scales in panels (h) to (k).

all broadly similar, with JRA-55 significantly higher (by
∼ 5 cm from October onwards). It is thus expected that the
MEDIAN-SF snowfall data will have excluded much of the
high JRA-55 snowfall data (the benefits of using a median
instead of a mean snowfall). Despite the NA region having
the highest snow depths and interannual variability, the intra-
reanalysis spread is similar to the other regions. The ASRv1
forced snow depths in the AO, CA and EA regions are signifi-

cantly lower during the December–April time period, despite
showing strong similarities to the other reanalysis-forced re-
sults in August–November. The ASRv1 results in the NA
region, however, are very similar to the ERA-I forced re-
sults. Note that we tested the impact of the different time
periods by producing the same figure for the 2000–2012 pe-
riod (not shown), which showed that the differences between
ASRv1 and the other products were similar and not sensitive
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to this time period difference. The results further allude to the
need for a consensus (e.g., median) snowfall dataset to force
the model with the consideration of the large uncertainty in
reanalysis-derived snowfall.

Figure 10 shows maps of the mean snow depths on 1 May
over the same 2001–2015 time period, for the model sim-
ulations forced by the MEDIAN-SF snowfall, then the dif-
ferences from this MEDIAN-SF simulation using the four
individual snowfall products.

The maps highlight the regional variability across the
products but consistency in the MERRA/JRA-55 (ASR) high
(low) difference compared to MEDIAN-SF. The JRA-55 and
MERRA forced results both show significantly higher (10–
20 cm) snow depths through Bering Strait, the NA/Fram
Strait region and the southern Labrador Sea. The ERA-I re-
sults show slightly lower snow depths over most of the Arc-
tic, small increases around the Canadian Arctic Archipelago
and larger decreases in the Fram and Bering Strait region,
driven by the larger differences in these regions in the
MERRA/JRA-55 forcings. The magnitude of the precipita-
tion events in Fram Strait are often large, but highly variable,
due to the active storm track and the resulting difficulties
of producing reliable precipitation rates during these events
(Boisvert et al., 2018). As discussed earlier, it is challeng-
ing to determine from this study any particular reanalysis-
derived snowfall dataset that might be more appropriate (or
an obvious outlier) for producing accurate snow depth esti-
mates across the Arctic. However, the MEDIAN-SF forced
results appear to provide a useful synthesis of the available
snowfall data.

5.3 Ice motion sensitivity

We also explore the sensitivity of NESOSIM to the input
satellite-derived ice motion data available during this period.
Here, we show results from the default/MEDIAN-SF con-
figuration forced by four different satellite-derived ice drift
products: NSIDCv3, Kimura, CERSAT and OSI SAF, as de-
scribed in Sect. 3.2. Due to limitations in the temporal cov-
erage of the different drift datasets, the model is only run
for 4 years initialized from 15 August 2011 to 2015 (exclud-
ing 2012 initialized runs as Kimura data are not available
due to gaps in the AMSR-E/AMSR2 record). The regional
snow depth estimates from NESOSIM forced by these four
ice drift products are shown in Fig. 11, with the 1 May results
summarized in Table 4. In general, the ice drift sensitivity
study shows a smaller spread in the mean snow depths across
the different products (up to ∼ 3.5 cm), compared with the
reanalysis sensitivity study (up to ∼ 13 cm). We also show
results of NESOSIM forced with no ice drift (NODRIFT),
which demonstrates that including ice drift appears not to be
a crucial process for capturing the variability in snow depth
at this regional scale; i.e., ice dynamics appear to be a clear
second-order term compared to snowfall when analyzed at
this regional scale.

The most obvious impact of ice drift is in the EA and NA
regions. In the EA region, the inclusion of ice drift reduces
the snow depth by 1.4–3.6 cm, with the magnitude depend-
ing on the ice drift product chosen (the Kimura forced re-
sults show the biggest decrease in this region). In the NA
region, the inclusion of ice drift increases the snow depth by
3.8 to 5.3 cm (the NSIDCv3 forced results show the biggest
increase in this region).

Figure 12 shows maps of the snow depths averaged on
1 May over the same 2011–2015 time period, for the model
simulations assuming no drift (NODRIFT), then the differ-
ences from this NODRIFT simulation using the various ice
motion products. In general, the results show strong simi-
larity in the spatial impacts of ice motion, including strong
decreases in snow depth (up to ∼ 10 cm) in the northeastern
sector of the Arctic, and increases (up to ∼ 10–20 cm) in the
region directly north and west of Svalbard. There are clear
differences between the different ice motion results, though,
with the NSIDCv3 and Kimura forced results showing more
of an impact on snow depth in the peripheral Arctic regions,
e.g., strong decreases in the north and increases in the south
Bering Strait, and strong increases in the Labrador Sea. This
is thought to be driven primarily by the increased spatial
coverage of these data compared to OSI SAF and CERSAT,
which may be masking some of the ice motion data in these
regions of low ice concentration and uncertain ice drift. The
maps also highlight that, at more local scales, the ice dynamic
contribution to snow depth variability could be significant.
The data around the pole hole are also questionable in some
of the products and may be related to interpolation issues
across the pole hole. More specifically, the NSIDCv3 and
OSI SAF forced simulations show increases in snow depth at
the North Pole, which are not apparent in the CERSAT and
Kimura simulations, suggesting this increase is likely spuri-
ous.

In general, Figs. 11 and 12 suggest that the NSIDCv3 (Po-
lar Pathfinder) forced simulations exhibit no obvious biases
compared to the results using the other ice motion products,
except for the issues of spurious snow depths within the pole
hole and issues around the ice edge.

5.4 Ice concentration sensitivity

Finally, we present and discuss the snow depth results from
NESOSIM driven by two different satellite-derived ice con-
centration products (Bootstrap and NASA Team), as de-
scribed in Sect. 3.3. The regional snow depth estimates from
NESOSIM forced by these two ice concentration products
over the 2000–2015 time period are shown in Fig. 13, with
the 1 May results summarized in Table 4. In general, the ice
concentration sensitivity study demonstrates that the choice
of ice concentration product is significant, with differences
of several centimeters between the two simulations across
the study regions (e.g., ∼ 7 cm differences in the NA snow
depths).
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Figure 9. Seasonal snow depth evolution across the four study regions (shown in Fig. 5) initiated from 15 August 2000 to 2014 and run until
1 May of the following year, forced by five different reanalysis snowfall products. This figure also includes results using the ASRv1 forced
simulations (which are limited to 15 August 2000 to 1 May 2012). The thick lines show the mean (daily) regional snow depths over this
time period, while the shaded areas represent interannual variability (1 standard deviation). All model runs use the default forcings/parameter
settings.

Figure 10. Simulated snow depths on 1 May (averaged over 1 May 2001 to 2015), using the MEDIAN-SF snowfall forcing (a) and then the
difference to the simulations forced by the four different snowfall products (b–e). The ASRv1 forced results are limited to 1 May 2012. Red
(blue) colors indicate the individual reanalysis-forced simulations have higher (lower) snow depth.
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Figure 11. Seasonal snow depth evolution across the four study regions (shown in Fig. 5), initiated on 15 August 2010, 2012, 2013 and 2014,
and run until 1 May of the following year, forced by four different ice motion datasets and assuming no ice motion (NODRIFT). The thick
lines show the mean (daily) regional snow depths over this time period, while the shaded areas represent interannual variability (1 standard
deviation). All model runs use the default/MEDIAN-SF parameter settings.

Figure 12. Modeled snow depth on 1 May (averaged over 1 May 2011, 2013, 2014 and 2015), assuming no ice motion (NODRIFT, a) and
then the difference to the simulations forced by the four different ice motion products and the mean snow depth from the four different forced
model runs.
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Figure 13. Seasonal snow depth evolution across the four study regions (shown in Fig. 5), initiated from 15 August 2000 to 2014 and run
until 1 May of the following year, forced by the Bootstrap (magenta) and NASA Team (blue) ice concentration datasets. The thick lines show
the mean (daily) regional snow depths over this time period, while the shaded areas represent interannual variability (1 standard deviation).
All model runs use the default/MEDIAN-SF configuration.

This was somewhat expected given the known low bias
in the NASA Team concentration data (e.g., Meier, 2005;
Ivanova et al., 2015), reducing the concentration of sea ice
for snow to accumulate on. More specifically, the Bootstrap
data use daily variable tie points and are thus thought to im-
prove the distinction between surface melt and open water.
The lower concentrations also increase the blowing snow lost
to leads term (as this is a function of the open water fraction).
The snow budget terms using the NASA Team concentration
data are shown in the Supplement (Fig. S7) to highlight this
further, with all regions showing reduced snow accumula-
tion and blowing snow lost to leads increased, and now sig-
nificant, across all regions. Again, we believe the Bootstrap
data better represent the seasonal ice conditions, although we
appreciate that uncertainties still remain regarding the treat-
ment of surface melt–melt ponds and their impact on snow
accumulation/depth.

5.5 Validation with Operation IceBridge data

Here, we present and discuss comparisons of our NESOSIM
snow depth estimates with NASA’s Operation IceBridge
spring snow depth data from 2009 to 2015, as described in
Sect. 3.5. We first show the basin-averaged results for the
various OIB snow depth products each spring (from 2009 to
2015) and the coincident NESOSIM snow depth estimates,
to assess how well NESOSIM captures the mean snow depth
and expected interannual snow depth variability across this
broad region of the Arctic. As discussed in Sect. 3.5, the OIB
flights mainly cover the western Arctic sea ice pack, broadly
within and to the west of the central Arctic domain used in
our earlier regional analyses, although this does vary each
year. Maps of the OIB snow depth retrievals across the dif-
ferent products are given in Kwok et al. (2017).
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Figure 14. Comparisons of the annual mean snow depths from NE-
SOSIM (default configuration) forced with different reanalyses and
the various Operation IceBridge (OIB) snow depth products. The
blue (red) shading represents the annual mean spread across the dif-
ferent NESOSIM results (OIB products). The markers are spread
across the shaded areas to improve readability.

Figure 14 highlights the significant and variable spread in
the annual mean OIB snow depth estimates (product spread
of ∼ 5 to 20 cm depending on the year), with the OIB-JPL
snow depth retrievals consistently higher and less variable
than the other two OIB products (SRLD and GSFC). The
reanalysis-forced NESOSIM snow depths exhibit a more
consistent spread of ∼ 5 cm, with the JRA-55 forced results
consistently higher than the other reanalyses. This was ex-
pected based on our previous analyses (e.g., the central Arc-
tic results shown in Fig. 11b). The large spread in the OIB
snow depths makes it challenging to assess the reliability and
accuracy of our NESOSIM results. In general, however, there
is broad agreement between the NESOSIM and OIB results
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in terms of the mean snow depths and the broad pattern of
interannual variability.

To assess how well the model captures regional snow
depth variability, we show scatter plots in Fig. 15 of the
NESOSIM/MEDIAN-SF snow depths and the three OIB
snow depth products from 2009 to 2015 (the regressions for
each year are given in Fig. S8). A summary of the correla-
tion coefficients (r) and root mean squared errors (RMSEs)
across the three OIB products and NESOSIM forced by the
three individual (and median) reanalysis products for indi-
vidual years and for all years of data is given in Table 5, with
the regressions shown in Figs. S9–S11.

In general, the comparisons are highly variable and depend
mainly on the chosen analysis year and the reanalysis snow-
fall dataset, rather than the OIB product. The correlations
between the OIB snow depth retrievals and the NESOSIM
snow depths improve significantly in 2012 (r = 0.63–0.75)
compared to the proceeding years (r =−0.15–0.61). The im-
proved correlations in 2012 onwards coincide with increases
in the OIB flight coverage, which include more of the cen-
tral Arctic and Beaufort and/or Chukchi seas, meaning the
data better represent the regional variability in snow depths
across the western Arctic. The strength of the correlations
is highest in 2012 and 2013, while the RMSEs are lowest
(< 10 cm) between 2011 and 2013, especially in the ERA-
I and MEDIAN-SF forced results. The OIB-SRLD RMSEs
are generally lower than the RMSEs calculated with the
other OIB products between 2010 and 2015, but significantly
higher in 2009 when the signal-to-noise ratio of the earlier
version of the snow radar used on OIB was higher (Kwok et
al., 2017). The 2009 OIB snow depth results should thus be
treated with caution.

The “all years” results in Table 5 provide a summary of
the correlations using all the OIB snow depth retrievals from
2009 to 2015. The MERRA forced results produce signifi-
cantly lower correlations to the OIB snow depths (r = 0.37
to 0.43) compared to the other reanalyses, while the ERA-
I forced results show the highest correlations (r = 0.53 to
0.64) and lowest RMSEs (9–10 cm). The MEDIAN-SF re-
sults show slightly lower correlations (r = 0.47–0.58) and
higher RMSEs (10–11 cm) compared to ERA-I. In general,
however, the moderate-to-strong correlations give us confi-
dence that NESOSIM is producing reasonable snow depth
estimates across the western Arctic. The RMSEs of ∼ 10 cm
imply the expected level of accuracy in our NESOSIM snow
depths, although these validations are hindered by uncer-
tainty in the OIB snow depth retrievals (Kwok et al., 2017)
and a lack of OIB retrievals in the eastern Arctic Ocean.

In the sensitivity studies presented earlier, we focused pri-
marily on the MEDIAN-SF simulations, due in part to con-
siderations of high snowfall variability in regions of high and
uncertain precipitation, e.g., the North Atlantic sector. The
OIB data lack coverage in this region, however, making it
hard to assess if this synthesized forcing snowfall produces
more accurate snow depths in these more challenging regions

of the Arctic. Data from the 2017 OIB flights into the eastern
Arctic will hopefully provide some assessment of our NE-
SOSIM snow depths in this region of the Arctic, however (the
data were not available for this study but were made avail-
able during the review phase of this paper). Our contempo-
rary (2000–2015) NESOSIM results still lack validation of
the simulated snow densities due to the lack of basin-scale
density data available during this time period.

We can further assess the performance of NESOSIM by
comparing these results with comparisons of OIB and the
commonly used Warren snow depth climatology (Warren et
al., 1999). As stated in the introduction, more recent uses
of this climatology tend to apply a scaling factor (usually
50 %) to the snow depths over first-year ice. We follow
the same approach here, using the EUMETSAT OSI SAF
(www.osi-saf.org) ice-type product which is derived from a
combination of passive microwave and scatterometry data at
10 km horizontal resolution (Breivik et al., 2012). We de-
rive daily modified W99 snow depths (referred to herein as
mW99) for the same 100 km bins used in Figs. 14 and 15
(where we have OIB data), with the comparisons shown in
Fig. 16.

In general, these comparisons are similar, although in
some cases the mW99 snow depths compare better with the
OIB snow depths, depending on the product analyzed. Note
that the bimodal nature of the mW99 data is due to the binary
ice-type weighting scheme, which does significantly improve
the comparison to the OIB data based on the RMSE and cor-
relation coefficients (comparisons of unmodified W99 data
are given in Fig. S12). The low RMSE values in the JPL-
OIB comparison are driven by the very good agreement in
the mean snow depth, while the GSFC and SRLD products
tend to show a slight low bias, increasing the RMSE values.
Figure 14 shows that the OIB-JPL product exhibits less in-
terannual variability than the other products, which may pro-
vide some explanation for the better correspondence with the
W99 climatology. We also carried out OIB comparisons by
delineating by ice type (first-year ice and multi-year ice) us-
ing the same OSI SAF product discussed above. However,
the results were mixed and were also strongly dependent on
the OIB product analyzed. Such delineations are also hin-
dered by the lower coverage of first-year ice in the OIB data,
despite this becoming an increasingly dominant component
of the Arctic sea ice pack. We thus chose to exclude this anal-
ysis from our discussion for simplicity.

In general, the modified Warren results are useful for
placing the NESOSIM-OIB comparisons in context, which
clearly show a higher spread and tend to suffer from posi-
tive and negative biases depending on the OIB product cho-
sen. Bias correcting the NESOSIM snow depths could im-
prove these comparisons, but uncertainty still remains re-
garding which OIB product better represents “truth” at this
basin scale.
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Figure 15. Scatter plots of the three OIB snow depth products binned onto our 100 km model grid and coincident NESOSIM/MEDIAN-SF
snow depth estimates for all years of data from 2009 to 2015, including the correlation coefficient (r) and RMSE. The contours show the
kernel density estimate of the distributions.

Table 5. Correlation coefficient (r , top rows) and root mean squared error (RMSE, bottom rows) from the correlations between the various
reanalysis-forced NESOSIM results and OIB-derived snow depths. The MEDIAN-SF scatter plots for all years of data are shown in Fig. 15,
with other reanalysis-forced scatter plots given in the Supplement.

Year MEDIAN-SF ERA-I JRA-55 MERRA

SRLD JPL GSFC SRLD JPL GSFC SRLD JPL GSFC SRLD JPL GSFC

2009
0.27 0.17 0.30 0.37 0.24 0.36 0.32 0.19 0.36 0.18 0.12 0.21

17 cm 11 cm 12 cm 15 cm 10 cm 11 cm 21 cm 11 cm 12 cm 19 cm 11 cm 13 cm

2010
0.12 0.06 0.11 0.27 0.27 0.29 0.16 0.07 0.15 −0.06 −0.15 −0.08

12 cm 10 cm 11 cm 11 cm 9 cm 10 cm 16 cm 11 cm 14 cm 13 cm 12 cm 13 cm

2011
0.38 0.28 0.46 0.56 0.47 0.61 0.29 0.20 0.38 0.14 0.04 0.25

11 cm 8 cm 9 cm 10 cm 7 cm 8 cm 16 cm 9 cm 12 cm 10 cm 9 cm 10 cm

2012
0.73 0.70 0.73 0.75 0.72 0.75 0.72 0.67 0.72 0.67 0.63 0.66
8 cm 8 cm 9 cm 8 cm 8 cm 9 cm 12 cm 11 cm 10 cm 8 cm 9 cm 11 cm

2013
0.69 0.68 0.65 0.73 0.74 0.70 0.67 0.65 0.63 0.67 0.66 0.64
7 cm 13 cm 15 cm 7 cm 12 cm 14 cm 9 cm 10 cm 12 cm 7 cm 13 cm 15 cm

2014
0.68 0.63 0.63 0.74 0.70 0.68 0.64 0.58 0.60 0.53 0.48 0.52

10 cm 9 cm 11 cm 9 cm 9 cm 10 cm 12 cm 12 cm 15 cm 11 cm 10 cm 10 cm

2015
0.659 0.52 0.48 0.68 0.62 0.54 0.58 0.50 0.49 0.37 0.29 0.32
9 cm 10 cm 10 cm 8 cm 9 cm 9 cm 13 cm 11 cm 15 cm 10 cm 11 cm 10 cm

All years
0.58 0.54 0.47 0.64 0.62 0.53 0.57 0.53 0.47 0.43 0.41 0.37

10 cm 10 cm 11 cm 9 cm 9 cm 10 cm 14 cm 11 cm 13 cm 11 cm 11 cm 12 cm

6 Summary

In this study, we presented the newly developed NASA Eu-
lerian Snow On Sea Ice Model (NESOSIM) version 1.0.

The snow depth and density simulated in NESOSIM (from
15 August to 1 May) across an Arctic Ocean domain (100 km
horizontal grid) were first compared against in situ data
collected by drifting Soviet stations during the 1980s. The
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Figure 16. As in Fig. 15 but showing comparisons of modified Warren snow depths (mW99) against the OIB snow depths.

model produced very strong agreement with the seasonal cy-
cles of snow depth and density and good (moderate) agree-
ment with the regional snow depth (density) distribution.

The model was run for a contemporary period (2000 to
2015) to produce seasonal snow depth and density estimates
representative of the New Arctic climate system. A bud-
get analysis provided insight into the relative processes con-
tributing to our modeled seasonal evolution in snow depth,
with snow accumulation driving increases in snow depth and
wind packing reducing snow depth (through an increase in
the bulk snow density). Blowing snow lost to leads provided
a significant sink of snow, but only in the lower ice concen-
tration, high wind–snow depth regime of the North Atlantic
sector.

The model showed strong sensitivity to the reanalysis-
derived snowfall forcing data, with the MERRA/JRA-55
(ASR) derived snow depths generally higher (lower) than
ERA-I. We derived a new synthesized snowfall dataset based
on the median ERA-I, MERRA and JRA-55 snowfall data.
We briefly assessed the sensitivity of NESOSIM to the in-
put concentration data, with our results suggesting that the
choice of concentration product (Bootstrap and NASA Team
explored in this study) can have a significant impact on the
simulations and should not be overlooked. We also explored
the sensitivity of NESOSIM to the input ice motion data,
where we showed this had a second-order effect compared
to the choice of reanalysis snowfall forcing in our regional
mean comparisons. The ice motion still appears to be impor-
tant at smaller spatial scales, e.g., by reducing snow depths
in the eastern Arctic and driving higher snow depths north of
Svalbard and within the Fram Strait.

We compared our NESOSIM snow depths against spring
snow depths derived from data collected by NASA’s OIB

since 2009 (up to spring of 2015) from three different al-
gorithms. Our comparisons show moderate–strong correla-
tions for the data collected from 2012 to 2015, but weaker
correlations before this. The root mean squared differences
were around 10 cm, but depend on the year analyzed, snow-
fall forcing and the OIB product analyzed. The ERA-I and
MEDIAN-SF forced results showing the best correspon-
dence with the OIB snow depths. These results were com-
pared with comparisons between OIB and the modified War-
ren snow depth climatology, which showed similar correla-
tions and root mean squared errors.

Errors in snow depths of around 10 cm are thought to con-
tribute to errors in ice thickness estimates derived from laser
(radar) satellite altimetry of ∼ 70 cm (50 cm) assuming typ-
ical freeboards of ∼ 30 cm (Giles et al., 2007). We expect
that further model development, calibration, and validation
are needed to improve accuracy and reliability in the NE-
SOSIM snow depths–densities, to improve their utility in ice
thickness retrieval analyses.

6.1 Future work

This initial formulation of NESOSIM (v1.0) has focused on
(i) incorporating several key snow parameterizations needed
to capture the regional and seasonal variability in snow depth
and density across the Arctic Ocean and (ii) providing a
framework simple and computationally efficient enough to
run the various sensitivity studies needed to assess the impor-
tance of input forcing data. As highlighted throughout the pa-
per, our relatively simple snow model is expected to undergo
improvements to its model physics in efforts to increase its
potential accuracy and reliability, together with further anal-
yses of the input forcing data, especially snowfall (extending
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the precipitation comparison of Boisvert et al., 2018). Exam-
ples of expected future improvements to NESOSIM include
the following, in order of priority:

– Incorporation of snow thermodynamics. The tempera-
ture evolution of the snowpack and snowmelt–refreeze
processes is modeled, allowing us to run NESOSIM
year round. Challenges will include accurately model-
ing or parameterizing the temperature profile through
the snow layers and the possible retention of meltwater
within the snowpack and its impact on the snow density.

– Increased vertical snow layers. Depth hoar is included
as an explicit snow layer as we introduce the snow ther-
modynamics described above. Model validation will be
an obvious challenge.

– Snow–ice formation. NESOSIM is currently run inde-
pendent of the sea ice state, meaning we include no
information regarding the potential for snow–ice for-
mation – the depression of the snow layer below sea
level and the conversion of snow to ice. This is thought
to be particularly important for running NESOSIM in
the Southern Ocean (e.g., Massom et al., 2001), where
snow–ice conversion is expected to be more prevalent,
but also in our North Atlantic sector (e.g., Granskog
et al., 2017). Challenges will involve incorporating ob-
served or simulated sea ice freeboard.

– Increased horizontal resolution. As we look towards
the launch of NASA’s ICESat-2 and the production
of sea ice thickness from the derived freeboard prod-
uct, we hope to increase the model resolution and con-
duct assessments of the ability of NESOSIM to capture
smaller-scale (< 100 km) snow depth variability.

Snow depth and density information collected during the
Norwegian Young Sea Ice (N-ICE2015) expedition (Merk-
ouriadi et al., 2017) and the upcoming Multidisciplinary
drifting Observatory for the Study of Arctic Climate (MO-
SAiC) will provide crucial insight into the importance of
smaller-scale phenomena not currently included in NE-
SOSIM, while our model results can hopefully provide use-
ful basin-scale context to the measurements being taken.

NESOSIM is being made available as an open-source
project (https://github.com/akpetty/NESOSIM) to encourage
continued model development and active engagement with
the snow on sea ice community. The model code is written
in Python, an open-source programming language (Python
Software Foundation, https://www.python.org/), to better en-
able future community development efforts. Our hope is that
the model will continue to evolve as additional snow pro-
cesses are incorporated, especially as new field and remote
sensing snow observations are collected and made available
for calibration/validation.

Code availability. The model code, including installation details
and test gridded forcing data, is hosted on GitHub: https://github.
com/akpetty/NESOSIM (last update: 8 November 2018). All the re-
quired forcing data can be obtained using the raw data links below
and gridded to the model domain using the included Python grid-
ding scripts; however, a link to a zipped file containing the gridded
forcing data is also included in the GitHub repository.

Data availability. The ERA-I and MEDIAN snowfall forced NE-
SOSIM output from 2000 to 2015 has been published on the
NASA Cryospheric Sciences Laboratory website (https://neptune.
gsfc.nasa.gov/csb/index.php?section=516, last update: 8 November
2018).

The ERA-I snowfall and wind data were obtained through
the ECMWF Meteorological Archival and Retrieval System
(http://apps.ecmwf.int/datasets/data/interim_full_daily/, last
access: 8 November 2018 The JRA-55 snowfall data were ob-
tained through the NCEP Research Data Archive (RDA) (http:
//rda.ucar.edu/datasets/ds628.0, last access: 8 November 2018).
The MERRA snowfall data were obtained through the NASA
Goddard Earth Sciences Data and Information Services Center
(https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=merra,
last access: 8 November 2018).

The sea ice concentration data were obtained through the
NSIDC, including daily NASA Team (http://nsidc.org/data/
nsidc-0051, last access: 8 November 2018) and Bootstrap (https:
//nsidc.org/data/nsidc-0079, last access: 8 November 2018) data.

The NSIDCv3 Polar Pathfinder ice motion data were obtained
through the NSIDC (http://nsidc.org/data/nsidc-0116, last access:
8 November 2018). The CERSAT ice motion data were ob-
tained from the IFREMER website (ftp://ftp.ifremer.fr/ifremer/
cersat/products/gridded/psi-drift/, last access: 8 November 2018).
The OSI SAF ice motion data were obtained through their web por-
tal (http://osisaf.met.no/p/ice/, last access: 8 November 2018). The
Kimura ice motion data were obtained by Noriaki Kimura and are
available on request.

The NASA Operation IceBridge snow depth retrievals were gen-
erated as part of the Snow Thickness on Sea Ice Working Group
(STOSIWIG) project and were obtained from the relevant authors
of the Kwok et al. (2017) intercomparison study and are available
on request.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-11-4577-2018-supplement.
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